图解霍夫曼编码

业界 作者:CSDN 2021-03-08 13:50:39 阅读:69

【CSDN 编者按】简明易懂的霍夫曼编码来啦,用图片的形式解答霍夫曼是不是很简单呢,浏览完本文就去动手试一试吧!


责编 | 张红月
出处 | 沉默王二

今天来给大家普及一下霍夫曼编码(Huffman Coding),一种用于无损数据压缩的熵编码算法,由美国计算机科学家大卫·霍夫曼在 1952 年提出——这么专业的解释,不用问,来自维基百科了。

说实话,很早之前我就听说过霍夫曼编码,除了知道它通常用于 GZIP、BZIP2、PKZIP 这些常规的压缩格式中,我还知道它通常用于压缩重复率比较高的字符数据。

大家想啊,英文就 26 个字母进行的无限组合,重复率高得一逼啊!常用的汉字也不多,2500 个左右,别问我怎么知道的,我有问过搜索引擎的。

字符重复的频率越高,霍夫曼编码的工作效率就越高!

是时候,和大家一起来了解一下霍夫曼编码的工作原理啦,毕竟一名优秀的程序员要能做到知其然知其所以然——请允许我又用了一次这句快用臭了话。

假设下面的字符串要通过网络发送。

大家应该知道,每个字符占 8 个比特,上面这串字符总共有 15 个字符,所以一共要占用 15*8=120 个比特。没有疑问吧?有疑问的同学请不好意思下。

如果我们使用霍夫曼编码的话,就可以将这串字符压缩到一个更小的尺寸。怎么做到的呢?

霍夫曼编码首先会使用字符的频率创建一棵树,然后通过这个树的结构为每个字符生成一个特定的编码,出现频率高的字符使用较短的编码,出现频率低的则使用较长的编码,这样就会使编码之后的字符串平均长度降低,从而达到数据无损压缩的目的。

拿上面这串初始字符来一步步的说明下霍夫曼编码的工作步骤。


计算字符串中每个字符的频率


B 出现 1 次,C 出现 6 次,A 出现 5 次,D 出现 3 次。


按照字符出现的频率进行排序,组成一个队列 Q


出现频率最低的在前面,出现频率高的在后面。


把这些字符作为叶子节点开始构建一颗树


首先创建一个空节点 z,将最小频率的字符分配给 z 的左侧,并将频率排在第二位的分配给 z 的右侧,然后将 z 赋值为两个字符频率的和。

B 的频率最小,所以在左侧,然后是频率为 3 的 D,在右侧;然后把它们的父节点的值设为 4,子节点的频率之和。

然后从队列 Q 中删除 B 和 D,并将它们的和添加到队列中,上图中 * 表示的位置。紧接着,重新创建一个空的节点 z,并将 4 作为左侧的节点,频率为 5 的 A 作为右侧的节点,4 与 5 的和作为父节点。

继续按照之前的思路构建树,直到所有的字符都出现在树的节点中。


非叶子节点


对于每个非叶子节点,将 0 分配给连接线的左侧,1 分配给连接线的右侧。

此时,霍夫曼树就构建完成了。霍夫曼树又称为最优二叉树,是一种带权路径长度最短的二叉树。

当树构建完毕后,我们来统计一下要发送的比特数。

1.来看字符这一列。四个字符 A、B、C、D 共计 4*8=32 比特。每个英文字母均占用一个字节,即 8 个比特。

2.来看频率这一列。A 5 次,B 1 次,C 6 次,D 3 次,一共 15 比特。

3.来看编码这一列。A 的编码为 11,对应霍夫曼树上的 15→9→5,也就是说,从根节点走到叶子节点 A,需要经过 11 这条路径;对应的 B 需要走过 100 这条路径;对应的 D 需要走过 101 这条路径;对应的 C 需要走过 0 这条路径。

4.来看长度这一列。A 的编码为 11,出现了 5 次,因此占用 10 个比特,即 1111111111;B 的编码为 100,出现了 1 次,因此占用 3 个比特,即 100;C 的编码为 0,出现了 6 次,因此占用 6 个比特,即 000000;D 的编码为 101,出现了 3 次,因此占用 9 个比特,即 101101101。

哈夫曼编码从本质上讲,是将最宝贵的资源(最短的编码)给出现概率最多的数据。在上面的例子中,C 出现的频率最高,它的编码为 0,就省下了不少空间。

结合生活中的一些情况想一下,也是这样,我们把最常用的放在手边,这样就能提高效率,节约时间。所以,我有一个大胆的猜想,霍夫曼就是这样发现编码的最优解的。

在没有经过霍夫曼编码之前,字符串“BCAADDDCCACACAC”的二进制为:

10000100100001101000001010000010100010001000100010001000100001101000011010000010100001101000001010000110100000101000011

也就是占了 120 比特。

编码之后为:

0000001001011011011111111111

占了 28 比特。

但考虑到解码,需要把霍夫曼树的结构也传递过去,于是字符占用的 32 比特和频率占用的 15 比特也需要传递过去。总体上,编码后比特数为32 + 15 + 28 = 75,比 120 比特少了 45 个,效率还是非常高的。
关于霍夫曼编码的 Java 示例,我在这里也贴出来一下,供大家参考。
class HuffmanNode {
    int item;
    char c;
    HuffmanNode left;
    HuffmanNode right;
}

class ImplementComparator implements Comparator<HuffmanNode{
    public int compare(HuffmanNode x, HuffmanNode y) {
        return x.item - y.item;
    }
}

public class Huffman {
    public static void printCode(HuffmanNode root, String s) {
        if (root.left == null && root.right == null && Character.isLetter(root.c)) {

            System.out.println(root.c + "   |  " + s);

            return;
        }
        printCode(root.left, s + "0");
        printCode(root.right, s + "1");
    }

public static void main(String[] args) {
        int n = 4;
        char[] charArray = { 'A''B''C''D' };
        int[] charfreq = { 5163 };

        PriorityQueue<HuffmanNode> q = new PriorityQueue<HuffmanNode>(n, new ImplementComparator());

        for (int i = 0; i < n; i++) {
            HuffmanNode hn = new HuffmanNode();

            hn.c = charArray[i];
            hn.item = charfreq[i];

            hn.left = null;
            hn.right = null;

            q.add(hn);
        }

        HuffmanNode root = null;

        while (q.size() > 1) {

            HuffmanNode x = q.peek();
            q.poll();

            HuffmanNode y = q.peek();
            q.poll();

            HuffmanNode f = new HuffmanNode();

            f.item = x.item + y.item;
            f.c = '-';
            f.left = x;
            f.right = y;
            root = f;

            q.add(f);
        }
        System.out.println(" 字符 | 霍夫曼编码 ");
        System.out.println("--------------------");
        printCode(root, "");
    }
}
本例的输出结果如下所示:
 字符 | 霍夫曼编码 
--------------------
C   |  0
B   |  100
D   |  101
A   |  11

给大家留个作业题吧,考虑一下霍夫曼编码的时间复杂度,知道的同学可以在留言区给出答案哈。

搞定。

在第 111 个女神节到来之际,CSDN 向所有技术女神致敬!并特邀产学研界的技术女神代表,共同探讨女性开发者的职业发展机遇与挑战,助力更多程序媛谱写精彩的程序人生。

腾讯:这可是一只“骨骼清奇”的狗

《互联网人求职图鉴》:这类人才“最吃香”,最高薪编程语言出炉!

一次解决Linux内核内存泄漏实战全过程

关注公众号:拾黑(shiheibook)了解更多

[广告]赞助链接:

关注数据与安全,洞悉企业级服务市场:http://www.ijiandao.com/
四季很好,只要有你,文娱排行榜:https://www.yaopaiming.com/
让资讯触达的更精准有趣:https://www.0xu.cn/

图库
关注网络尖刀微信公众号
随时掌握互联网精彩
赞助链接